
Merit: Digital Money Built for People

Maxim Khailo
Adil Wali

August 30, 2018

Abstract
A safe and fair digital money would allow all users to participate and

benefit from the economic freedom that blockchain technology can pro-
vide. Yet, existing blockchain systems function as bearer currencies and
struggle to support everyday needs of most users. Centralization has over-
run these systems increasing the reliance on trusted third-parties. Addi-
tionally, the technological limitations of these currencies allow for massive
fraud and theft and create an unreasonable burden for the average user
to both stay safe and conquer complex usability barriers. Merit attempts
to address these issues with structures that encourage growth and ease of
use while allowing users to keep their assets safe in decentralized vaults.
To combat centralization with mining, Merit implements an ASIC resis-
tant Proof-of-Work based on the Cuckoo Cycle. It further innovates by
introducing Proof-of-Growth, which enables ambassador mining rewards
that reward users for growing the network of Merit users.

1 Introduction

Nation states designed their banking systems to facilitate their needs. A nation
state needs to be provisioned and uses the banking system to purchase goods
and collect taxes. Nations also desire to keep the populace happy by facilitating
trade and everyday transactions in market systems. Cryptocurrencies have de-
veloped to subvert the needs of the state and elevate the needs of the people as
the primary goal. All cryptocurrencies focused on undermining the state do so
at the expense of the primary intended purpose of giving financial freedom to
everyone. Many cryptocurrencies have ended up with extreme centralization in
their operations, both in mining and in facilitating exchange. People, desperate
for usability, are relying on third-party providers to bridge the gap between the
protocol and the user. The outcome has become an anathema to the original
vision of decentralized cryptocurrencies. Merit believes this to be the single
largest problem facing the cryptocurrency landscape today. The Merit Foun-
dation has set out to address this problem on three fronts: simplicity, safety,
and community. Merit’s high-level vision is to finally attain the original vision
of a decentralized internet-of-money where individuals don’t have to rely on
third-party trust to benefit from the power of the blockchain.

1

2 Themes

Merit has aggressively focused innovating four interrelated ideas.

Community

Safety

Usability

Scalability

Figure 1: The Four Themes

To deliver on the community theme, Merit is implemented as an invite-only
currency that creates a scarcity of addresses. The invite-only mechanic enables
stable growth, improved safety, and innovative features to develop a platform
for building communities.

To deliver on safety, Merit employs decentralized vaults which provide whitelists,
rate limiting, and decentralized account recovery. We can think of vaults as the
mssing savings account on the blockchain.

To deliver on usability, Merit provides an identity system which provides
user-friendly aliases such as @max or @adil in liue of addresses. Merit also
provides a way to send transactions through any communication channel via a
secure URI schema.

To deliver on scalability, Merit’s first implementation has 80 times the max-
imum throughput of bitcoin, through improvements in block size and frequency.
Further, Merit employs a new ASIC resistant Proof-of-Work algorithm called
the Cuckoo Cycle so that everyone using conventional hardware can participate.
Perhaps most dramatically, Merit employs a generalization of the blockchain
called the block fabric which can provide performance that is many orders-of-

2

magnitude higher than others cryptocurrencies.

3 The Problem

3.1 The Third-Party Paradox

The design of many Cryptocurrencies requires users to manage and secure hun-
dreds of cryptographic keys themselves. Each transaction in Bitcoin creates
a new key which the user must manage and secure. In this way, each cryp-
tocurrency acts as a bearer currency and does not have any of the modern
conveniences centralized banking systems provide. In a state run fiat-based sys-
tem, if one were to lose access to their bank account, they can get that access
back by simply providing proof-of-identity. If they go on to lose access to their
Bitcoin keys, nobody can recover the funds. Because of how impractically bur-
densome this is for most users, many users of many popular cryptocurrencies
such as Bitcoin, Ethereum, and Litecoin rely on third-party services to securely
store these cryptographic keys. Simply stated, most cryptocurrencies avoid the
realities of human nature and the human condition. As a result, counter to
the core ethos of cryptocurrencies, third-party companies have have become the
defacto standard for so many users worldwide.

Users of cryptocurrencies also rely on third-parties to maintain the blockchain
ledgers because the vast majority of mining and node operations have become
centralized. Because of the poor quality and usability of many blockchain
projects, people have a difficult time using these systems in the decentralized
way they were intented to be used.

Mining is also dramatically centralized. This is primarily because the Proof-
of-Work approach to mining rewards those with extraordinarily large bank ac-
counts. Companies and individuals who can fund large mining data centers
full of specialized hardware dominate the hashpower of most major currencies.
[1] Secondarily, the poor quality and high-opacity of much of the mining soft-
ware causes users to have a difficult time in truly decentralizing these systems
the way they were intended to be. Even those users who are brave enough to
mine cryptocurrencies typically rely on centralized mining pools because most
systems have become impractical to mine in a decentralized way.

The paradox exists because of the decentralized nature of these systems.
Decentralized systems are hard to make user-friendly. This usability gap gets
filled by centralized third-parties, and many non-expert users drawn to the space
do not realize that this centralization is completely counter to the purpose of
cryptocurrencies. Perhaps worst of all, this centralization creates a false sense
of security for users who are drawn to the ’cryptographically secure’ headlines.
Billions of dollars have already been stolen from these centralized banks that
attempt to bridge the usability gap. Merit aims to solve this usability gap so
that users can get the level of simplicity that they expect without having to
compromise on the core notion of decentralization.

3

3.2 Safety First

Merit recognized the need to aggressively focus on ease of use and safety so
that users are not tempted to rely on centralized third-parties for everyday use.
To this end, Merit innovates by adding the new Global Send protocal, which
empowers users to send funds quickly and easily across any communication chan-
nel like SMS and email. This approach stays true to decentralization through
the creation of an escrow address on the blockchain that can subsequently be
claimed by the recipient. Merit also provides a way to secure funds in vaults
that have whitelists, rate limiting, and decentralized account recovery. These
features make theft more difficult and diminish the consequences.

3.3 The Death Star Networks

The dream of everyone running mining software has been subverted by those
with the wealth to develop specialized mining hardware and use them on a
large scale. To participate in mining for Bitcoin and other popular currencies
now requires investments in equipment that is out of reach for most people.
Specialized hardware has led to massive centralization in the form of mining
farms and pools.

intermediary user

user

user

user

user

user

user

user

user

Figure 2: A Centralized Star Network

This centralization mirrors that of what happened to the internet at the end

4

of the dot-com bubble. We ended up with massive star-shaped networks where
intermediation has become the norm.

Merit combats this centralization by using a memory-hard ASIC resistant
proof-of-work algorithm known as the Cuckoo Cycle [2], which relies on the
commodification of RAM to resist any advantage specialized hardware would
have.

4 Community

The Merit team believes building a healthy and active community is one of the
best ways to prevent centralization. We believe that incentives largely shape
the behavior in human systems, and that the incentives in the cryptocurrency
world are woefully incomplete. Before Merit, Proof-of-Work mining has pri-
marily been a security activity. The newer notion of Proof-of-Stake rewards
’buying and holding’ behavior that indirectly takes currency out of active daily
use in the system. Neither of these incentives addresses the most important
pillar in any currency: the number of people using it. Merit incentivizes the
creation of this lifeblood through its innovative Proof-of-Growth algorithm that
drives ambassador mining. We recognize that not all users are cut from the
same socioeconomic cloth. Not everyone is wealthy enough to build or buy a
datacenter or to buy millions of dollars worth of a crypto and hold it. But any-
one, irrespective of wealth or background, can share and grow the community.
We call this crucial user the ambassador, and we rely on them to provide the
valuable function of educating users and providing a voice and perspective of
what cryptocurrency and Merit are all about.

4.1 Proof-of-Growth

To use Merit, you must beacon your public keys by providing an address of an
inviter. The address of a public key is the same as that of Bitcoin and other
cryptocurrencies. In this case, it is the public key hashed using RIPEMD-160
with base-58 encoding [5].

Through the activities of the invitee, the inviters address becomes a candi-
date in a lottery that is executed when every block is mined. The miners dedicate
a percentage of the mining reward to users called Ambassadors of Merit. This
beaconing system constructs an Ambassador Forest.

5

genesis

joe sue

bob alice ... rick

... ...

Figure 3: Ambassador Forest

It is a forest because the genesis address does not participate in the lottery
system. Each node in the Ambassador Forest has a Community Growth Score
(CGS) which is computed as a function of the node, and its children’s value in
Merit. The higher the CGS, the more likely the Ambassador will win a reward
in a block. The function used to compute the CGS for an address is fair, and
new members can compete with older members as readily.

This beaconing process is a pre-requisite requirement for enabling a dis-
tributed invite-only system and other relevant safety and community features.

4.2 Beacons

Each block provides a dedicated space for Beacons. A Beacon advertises an
address and some related data about an address. A Beacon has some required
data, is signed and broadcast to the mining nodes. The mining nodes will
validate the Beacon and then include it in a block.

4.2.1 Beacon Properties

The beacon is composed of...

6

Property Description
Inviter Address The address you were invited by.
Address The address you want to beacon.
Public Key The public key which to sign the beacon.
Signature The signature produced by the public key.
Alias An optional 20-byte field that can be used to assign an alias

to an address.

4.2.2 Address

If the address type is a regular public key, then the address of the public key
must match the provided address.

Merit inherits and extends Bitcoin’s scripting system and therefore has ad-
dresses for scripts just like it does for public keys. If the address is a script, then
the public key can be any public key. This key is then combined with the script’
address to provide a new address which the user will advertise to others. This
process is required to prevent bad actors from reassigning the inviter address to
those they desire.

4.2.3 Inviter Address

Each Beacon must include an inviter address. The inviter address is required
to maintain the Ambassador Forest so that the Ambassador Reward structure
remains consistent. Because Merit is an invite-only system, each new address
must, therefore, have an inviter address. The Inviter address must have already
been beaconed and should have received at least one Merit Invite (MRTi).

4.2.4 Public Key

If the address beaconed is generated by a public key, then the provided public
key’s address must match the beaconed address. If the address is derived from
a script, then the public key can be any key.

4.2.5 Signature

The signature is signed by the private key that corresponds to the public key.
The data used to generate the signature is the serialized Beacon sans the signa-
ture.

4.2.6 Aliases

The alias in the beacon must be globally unique. An alias can be used in place of
an address in all the core activities on the Merit network. Aliases provide a much
easier way of identifying recipients of transactions. This alias is optional, and
users can simply choose to only be known by their more classic Merit address.
We sense that aliases will not only be used by most users, but will also be used

7

by institution to make it easy to transact with customers, donors, and payees
via the Merit blockchain.

4.2.7 Beacon Lifetime

The beacon is not mined in a block until its address is invited via an invite
transaction. The beacon remains in the pool until it an invite is sent to it’s
address, where a miner will package both in the same block. This requirement
exists to prevent parking aliases in the blockchain without being invited and is
an anti-spam measure for beacons.

A user can deactivate a beacon by spending the beacon’s last invite. If
a beacon’s final invite is spent, then the alias used in that beacon becomes
available again for someone else to take.

4.3 Address Aliases

A user can set an optional globally unique alias to their address via a beacon.
All interfaces that require an address can use the alias instead. The alias is first
come, first serve and must be globally unique. The alias is limited to 20 bytes
and has some basic validation to make sure it does not use specific reserved
words.

4.3.1 Simplicity

@foobar = MEegc9eva9moRxkRi74GSL7AtPVdbyCXe2

Aliases provide a great improvement in usability over existing cryptocurren-
cies where users can use recognizable names for their addresses. This feature
is available but not required for people to use. Not all users want to have a
recognizable alias of their addresses and would prefer to stay anonymous. Ad-
ditionally, for public organizations, this provides a great opportunity to make
receiving funds easier in the same way that DNS makes setting up internet
addresses easier via top-level domains.

4.3.2 Better Safety

Aliases also provides a degree of safety because one can associate an alias with
an address and can use either one to validate the other. Further, aliases are
dramatically easier to type-in and spot-check than a 34-character key. If the
user prefers to use an address, they can query the blockchain for the alias and
use that to check that the address is correct. Organizations can publish their
address along with the alias and users can look up the address for an alias and
validate that the alias is correct. In these ways, aliases should help eliminate a
frequent source of error and fraud when trying to transact with users who use
this feature.

The Merit core team considered using Internationalized Domain Names for
Applications (IDNA) [6], notably the ”stringprep” [7] algorithm for sanitizing

8

and indexing Aliases but eventually decided against it for safety reasons. Mainly
spoofing names using a homograph attack to trick users into thinking they are
using one alias when in fact they are using another [8]. These attacks use com-
binations of Unicode characters that look visually identical to other characters.
Homogrpaphy attacks are particularly dangerous if users copy and paste these
aliases instead of typing them out. Modern web browsers are frequently being
patched to prevent phishing attacks [9], but it is a never-ending battle. Since
Merit is a blockchain of assets, the risks for phishing would be too high if aliases
used Unicode. After serious consideration, it was determined that aliases should
be heavily restricted at the cost of flexibility and internationalization.

Aliases must be matched the following case-insensitive regex.

Listing 1: Alias Validation Regex

[a−z0 −9] ([a−z0−9 −]){1 ,18} [a−z0−9]

4.3.3 Organized Distribution of Names

The invite-only design is also important for individuals and organizations which
a unique identity for an address is important. It provides them a chance to
claim an important name by seeking out an invite before others can claim it.
It also provides an incentive for users to get invites as they limit access to this
identity system.

4.4 Invites

Merit is an invite-only cryptocurrency where exiting users control the growth.
The invite-only system is designed to provide stable growth and empower the
ecosystem to grow organically. This ensures that the software can be improved
in lock-step with the growth of community, and helps the whole community
avoid the ’not ready for primetime’ paradox that plagues the fastest-growing
currencies. Further, it ensures that the network can be as secure as possible at
each checkpoint of scale. The invitations are mined just like the currency and
distributed in a decentralized way. The distribution of invitations is uniform
among existing addresses. The creators of Merit cannot generate invites, and
do not have any special privileges related to their distribution.

4.4.1 Address Validation

An address is valid when it has both a valid beacon and at least one unspent
invite, known as the activating invite. As a user accrues invitations, they can
transfer them to other beaconed addresses which activates those addresses on
the Merit network. A user who wants to be invited signals this by beaconing
their address and publicly stating which address or alias invited them. The
user who owns the inviter address will be notified when the beaconing happens,
and they can consider the new address for an invitation. To activate that new
beaconed address, they send an invite to that address.

9

As long as an address has one unspent invitation, it is activated, and can
thus participate in sending and receiving Merit.

4.4.2 Transactable

You can transact with invites the same as you can with Merit. You can send
them to addresses and receive them. The same requirements to spend Merit
are checked for invites. Invites have additional validation and you cannot mix
them in the same transaction as with Merit. The inputs of invites must also
be invites, and the outputs must also be invites. You can think of invites as a
currency within the system which enables the use of Merit.

4.5 Ambassador Rewards

Merit recognizes that a variety of users contribute to the growth and stability
of the system but might not run mining nodes. This could be for a variety of
reasons, with perhaps the most compelling being that the majority of the world’s
population does not own a PC. Unlike bitcoin and other cryptocurrencies, Merit
does not presume a homogeneous and tech-focused user base. The invite-only
system requires real people to decide and distribute invites to grow the Merit
community. The lottery system was designed to reward these stewards. Miners
will distribute out “Ambassador Rewards” in the form of a lottery based on how
well they grow the Merit user base and contribute to it’s overall stability. The
rewards are distributed per block, with part of each block’s total reward being
split between the security miner and the top ambassador miners of each period.
A deterministic lottery system computes a Community Growth Score (CGS)
for candidate addresses and distributes proportional rewards to the winners.

As of this writing, about 10 Merit (MRT) are awarded to the miners and 10
MRT are rewarded to Ambassadors. There are twenty winners per block where
5 MRT out of the 10 MRT are distributed to Ambassadors based on what we
call the CGS distribution and the other 5 MRT are selected from the what we
call the SubCGS distribution. These two distributions require computing the
Community Growth Score which will be explained in detail below.

4.5.1 Community Growth Scores

Each user in the Merit network has a Community Growth Score (CGS) which is
used to decide how to give out the Ambassador Rewards by the lottery system.
The CGS factors in both, the aged balance of the user, and also the aged
balances of their network. In order to compute the CGS of an address, we must
compute several different things and bring them together.

1. Aged Balances of all the addresses.

2. Address Contribution of all the addresses.

3. Subtree Contribution of all the subtrees in the Ambassador Forest.

10

4. The Weighted Score of all the addresses.

5. The Expected Value of each address.

6. And finally the Community Growth Score of each address.

The CGS computation is a variation of the Pachira Lottree [24] which is
a lottery tree that prevents sybil attacks while indirectly incentive network
growth. In addition to indirectly incentivize network growth, we provide di-
rect incentives by computing SubCGS and performing a second lottery. We
chose a variation of Pachira because it’s the only proven algorithm involving a
lottery tree that defends against sybil attacks while balancing incentives.

4.5.2 Aged Balance

The first step to compute the CGS is to compute the AgedBalance of all the
addresses in the network. This is done by taking all the unspent coins, and
adding up all the balances applying a BalanceAppreciation function to them.

BalanceAppreciation(h, t,m) = (1− 1

(t−h
m
4

)2 + 1.0
)

Where h is the block height of the coin, t is the height of the block being vali-
dated, m is the number of blocks to reach maturity. Merit uses a 30 day maturity
which, with an average of a minute between blocks, means m = 43200. The aged
balance is simply the value of the coin multiplied by the BalanceAppreciation
of that coin.

AgedBalance(b, h, t,m) = BalanceAppreciation(h, t,m) ∗ b

Where b is the value of the unspent coin. Note that the co-domain of
BalanceAppreciation is [0, 1) which means the AgedBalance should never be
greater than the value of the coin.

4.5.3 Address Contribution

Each address in the network has a network contribution which is the sum of the
value of all the unspent coins for that address, multiplied by a BeaconDecay
function plus the sum of all the aged balances of those coins. The BeaconDecay
function follows a similar curve to the BalanceAppreciation except in reverse.

BeaconDecay(h, t, d) =
1

(t−h
d
4

)2 + 1.0

Where h is the height of the beacon, t is the height of the block we are
validating, and d is the decay time in number of blocks. The decay time is 30
days of block time which means d = 43200.

The Address Contribution (AC) can then be computed as.

11

BC(C, n, t, d) = BeaconDecay(h, t, d)

n∑
i=0

Ci

AB(C, t,m) =

Cn∑
i=0

AgedBalance(Ci, C
i
h, t,m)

AC(C, h, t, d,m) = BC(C, n, t, d) +AB(C, t,m)

Where C is the set of all unspent coin balances, H is the set of all unspent
coin block heights, n is the total unspent coins, h is the beacon height, t is the
height of the current validation height, d is the number of blocks for decay, and
m is the number of blocks until coin maturity.

4.5.4 Subtree Contribution

Each address is either a leaf node in the Ambassador Forest or has a subtree.
If the address is a leaf, then the subtree contribution of the address is the same
as the address’s contribution (AC) specified above. Otherwise the address is
a subtree and the contribution is simply the summation of all child subtree
contributions.

SC(N, t, d,m) = AC(Nu, Nh, t, d,m) +

Nt
c∑

i=0

SC(N i
c , t, d,m)

Where N is the address and it’s properties, t is the currently validating block
height, d is the decay time, and m is the maturity time. The address property
Nu is the address’s unspent coins, Nh is the address’s beacon block height, N t

c

is the total children, and N i
c is a child at index i. The SubtreeContribution

can be efficiently computed by doing a post-order traversal of the Ambassador
Forest.

4.5.5 Weighted Score

After the Subtree Contribution a weighted score is computed for each address.
The weighted score is a convex function where the curve is controlled by two
parameters called the B and the S parameters.

WS(c, T,B, S) = B
c

T
+ (1−B)

c

T

1+S

Where c is the subtree contribution, T is the subtree contribution of the
genesis address, which is the same as the entire contribute of the Ambassador
Forest. The B and S parameters control the balance between rewarding growth
and fairness. Both B and S must be between 0 and 1.

This convex function has some desirable properties, one of which is fine
grained control over the score gradient. As you will see when computing the
Expected Value, a bigger B parameter means less emphasis on the subtree and a

12

bigger S means more influence the subtree has. Both together provide fairly fine
control over balancing fairness with growth. Fairness being that an address’s
direct contribution has more weight than their network size. Merit uses B = 0.2
and S = 0.05 which was determined via simulation.

4.5.6 Expected Value

The final component of computing CGS is calculating the expected value of
an Address, which is the probability of the address being selected during the
lottery. The expected value of an address is the weighted score of the address,
minus the sum of the weighted scores of all address’s children.

ExpectedV alue(c, T) = WS(c, T, 0.2, 0.05)−
cn∑
i=0

WS(ci, T, 0.2, 0.05)

Where c is the subtree contribution of an address, ci is the subtree contri-
bution of the addresses child at index i, and T is the subtree contribution of
the genesis address. Because WS is a convex function, the difference between
the WeightedScore of a node and it’s children get’s bigger as the network get’s
bigger. In other words, the WS of an address increases as the network grows
under it relative to an address with the same direct contribution but without
the network.

The properties of the WeightedScore and how the ExpectedV alue gets com-
puted defends against a sybil attack. If a person decides to fake identities, then
the sum of their expected values is not higher than if they just had a single
identity. Refer to the Pachira [24] paper for proof of this conclusion.

4.5.7 Final CGS and SubCGS

Once all the expected values are computed for each address, the final CGS is
simply the contribution of the whole Ambassador Forrest times the expected
value.

CGS(C, T) = T ∗ ExpectedV alue(c, T)

And the SubCGS is computed exactly like CGS except log is applied to all
the contributions.

4.5.8 Two Lotteries Per Block

Coins rewarded in merit are split three ways. For every block, half the coins go
to the miner. The other half is distributed across two lotteries, one based on
CGS and the other based on SubCGS. Each lottery is executed by applying
an inverse transform sampling on the set of all valid candidates.

13

4.5.9 Valid Candidates

Only addresses with certain criteria are able to participate in the lotteries. An
address must have the following properties.

1. Must have a balance of at least one block reward (20MRT in the begin-
ning).

2. Beacon must be valid, meaning it must have at least one invite.

4.5.10 CGS Lottery using Inverse Transform Sampling

Each miner executes a lottery for a particular block by taking all the valid
candidates and performing an inverse transform sampling [11].

The cumulative distribution function used in the sampling is computed by
taking all the CGSs, sorting them in ascending order and stacking them on top
of one another.

CDF (CGSi) =
PreviousCGS(CGSi) + CGSi

TotalCGS

To pick the 10 winners. the block hash is used as a seed value which is
applied iteratively per winner to get the next winner.

hash = sha256(previousHash, previousWinner)

rand = siphash(hash)

Where rand is used to search for a winner in the CDF space. This search in
O(logn) time by doing a lower bound search given the rand value in the CDF
space. The overall complexity of the sampling is O(nlog(n) + slog(n)) where n
is the number of candidates and s is the number of samples.

4.6 Invite Rewards

The algorithm for creating and distributing invites is similar to the Ambassador
Lottery except there are three lotteries.

1. The lottery based on SubCGS.

2. The one-time award lottery.

3. The random lottery.

Each of these lotteries has a specific purpose to improve the overall experi-
ence of old and new users.

14

4.6.1 Selecting Addresses

As the blocks progress, Merit needs to decide whether to distribute invites or
not. At a minimum one out of ten blocks, the miner is awarded an invite and
one out of ten blocks, one invite is distributed to an address based on the three
potential lotteries. Note this is the minimum amount of invites distributed
and Merit will adjust the amount upwards as more invites are used by doing a
moving average over the last X blocks. Typically over a days worth of blocks.

block 0 block 1

invite 1

block 2

invite 1

block n
...

invite 1 invite 1

invite 2 invite 2

invite x

...

invite 2

invite x

...

Figure 4: Decentralized Invite Generation

When the protocol decides to generate and distribute an invite, it first selects
one of the lotteries by using the previous block hash as a seed. Each lottery has
a certain probability of being selected, with the SubCGS lottery being selected
50% of the time, the one-time award lottery 40%, and the remaining 10% is
distributed via the random lottery.

seed = sha256(previousBlockHash)

hash = seed

lottery0 = siphash(seed) mod 3

hash = sha256(hash)

lottery1 = siphash(hash) mod 3

...

Once the lottery is selected, it get’s executed to get an address to reward
with an invite.

15

4.6.2 The SubCGS Lottery

This lottery is executed just as the SubCGS lottery is for the ambassador re-
wards. The higher the SubCGS is for an address, the more likely you will be
given an invite. The reasoning behind this is that those successfully growing
the community should receive more invites.

4.6.3 The One-Time Reward Lottery

This lottery is fairly straight forward. It looks at all candidates which have
not previously one an invite and gives them one. Since you have to burn an
invite to be able to get one in this lottery, making new addresses for the sake
of participating does not make much sense and cancels out any benefit. The
lottery is performed as a simple search.

Listing 2: One-Time Reward Algorithm

for candidate in cand idate s
next i f candidate has a l r eady won once .
next i f candidate has more than 2 i n v i t e s a l r eady .
mark candidate
return candidate

The reasoning behind this lottery is that new users should get an invite
because they need a kick start to grow their own network.

4.6.4 The Random Lottery

It takes all candidate addresses in creation order and samples them using the
previous block hash as a seed and successive hashing to determine the winners.

The first address is determined by taking the previous block hash and then
running it through siphash [10] to determine a 64-bit random number.

seed = sha256(previousBlockHash)

rand = siphash(seed)

That amount is modded with the total confirmed addresses to pick the first
address.

firstAddress = addresses(rand mod total)

Success winners are selected by repeatedly hashing, combining the address
with the previous hash to get a new value. The initial hash being the previous
block hash.

itemHash = sha256(previousItemHash, address)

rand = siphash(itemHash)

address = addresses(rand mod total)

16

The purpose of this lottery is to provide more diffuse noise into the system.
Since deciding which user deserves a lottery is imperfect, even with the two
algorithms above, the next logical step is to assign randomly. Since invites are
transferable between parties, it is expected that a market will develop around
invites and their distribution.

Listing 3: Decentralized Invite Algorithm

i n v i t e s = empty s e t
number o f i n v i t e s = average used in l a s t X b locks per minute
hash = prev ious block hash
for i in number o f i n v i t e s

rand = siphash64 (hash)
index = rand % t o t a l conf irmed addre s s e s
address = address [index]
i n v i t e s . add (address)
hash = sha256 (hash + address)

4.6.5 Distribution Rate

The number of invites generated is based on the usage of invites within the last
day. The invite distribution algorithm looks at the number of blocks that would
have comprised the previous day (assuming 1 block issued per minute). The
algorithm self-regulates in this way so that there are never too many or too few
invites in the system at any given time. The system has an inherent minimum
of two invites per ten minutes.

We can illustrate this through an example. If, in the last day, users have
sent 7 invitations per block on average, that would mean that the current block
should reward community members with 7 new invites.

4.7 Community Beacons

The beacon and invite mechanisms provide a base platform to build exclusive
communities and authentication systems. People can create a community bea-
con which has an address just like a normal beacon. The community beacon is
an extension of the existing beacon and contains a badge script.

Property Description
Badge Script Script which assigns a badge
Inviter Address The address you were invited by.
Address The address you want to beacon.
Public Key The public key which to sign the beacon.
Signature The signature produced by the public key.
Alias An optional 20-byte field that can be used to assign an alias

to an address.

17

Activating a community beacon is just like another beacon and requires an
invite. However, sending Merit to the address beaconed requires the additional
badge script to run successfully for the transaction to be considered valid. This
extra validation provides opportunity to restrict beacons in various ways.

4.7.1 Badges

Badges are assigned to addresses when an address sends Merit to the commu-
nity address and the badge script validates the transaction. The creators of
a community beacon can query the Merit system whether the badge has been
assigned or not to an address.

Inviter

@joe

Beacon Alias

@joenews

Badge Script

5MRT

Input

@bob

Output

@joenews

Amount

5MRT

+@community_a

Input

@alice

Output

@joenews

Amount

1MRT

fail+5MRT +1MRT

Figure 5: Community Beacons and Badge Assignment

Badges allow people to create exclusive communities. For example, a website
which wishes to charge for content can allow users to send a specified amount
of Merit to the website’s alias, and the sender will automatically be assigned
the community badge. The website operator can then challenge the user to
prove they are the owner of the address by making them sign some data with
their private key. Once the address owner verifies their identity, the operator
can check whether the address has the correct badge and allow them to access
the website. Another example is a private venue wanting to sell tickets. They
can create a community beacon and ask patrons to send Merit to the beacon to
get a digital ticket in the form of a badge. Software and hardware creators can
provide authentication systems which build on the alias and badge system to
replace traditional tickets, subscriptions, and other services that have payment
dependant features.

4.7.2 Badge Scripts

Merit builds upon the Bitcoin scripting system. Transactions and badge scripts
use the same virtual machine which is stack based and is inspired by the Forth
programming language [12]. However, badges require new instructions for the

18

virtual machine (called opcodes) to be useful for building communities and the
desired use cases outlined above. The Bitcoin scripting system is designed so
that scripts have minimal context and are not transaction aware. For Badges
to function, we need to create new opcodes which can query the blockchain or
inspect different parts of the transaction like the inputs and outputs.

Opcode Name Inputs Output Description
INPUTADDRESS Index Address Returns the address at input in-

dex
INPUTCOUNT NA Count Returns the number of inputs in

the transaction
HASBADGE Address,Badge Bool Returns true if the address has

the badge specified

With Merit transactions, the scripts work by combining an output script
with the coin’s public script for validating an output. Badges work the same
way but add the badge script with an empty stack as additional validation.
Vaulting, described below, introduces even more opcodes which are useful for
badges as well.

An obvious downside to adding powerful opcodes that can query the transac-
tion or blockchain is that validation time must necessarily increase. Great care
must be taken to provide an upper bound in time that a transaction can take to
validate. This upper bound is not defined here and will remain implementation
specific.

4.7.3 Badge Transaction Validation

The beacon’s badge script validates whether a transaction to the address of that
beacon is valid. This validation happens to each transaction to the beaconed
address. It executes the script for each output in the transaction that matches
the address and uses the outputs script as input to the badge script. The badge
script can ignore the stack or use it in constructive ways.

19

Step 1 Execute Ouput Script

Step 2 Execute Input's Script

Reject Transaction

returns falseStep 3 Execute Redeem Script

returns false

Step 4 Execute Badge Script returns false

Accept Transaction

returns false

Figure 6: Badge Validation State Machine

4.7.4 The INPUTADDRESS Opcode

Opcode Name Inputs Output Description
INPUTADDRESS Index Address Returns the address at input in-

dex

The INPUTADDRESS opcode extracts the address from the input at the
index specified and pushes it to the top of the data stack. The output is bytes
of the RIPEMD-160 hash which represents the address.

4.7.5 The INPUTCOUNT Opcode

Opcode Name Inputs Output Description
INPUTCOUNT NA Count Returns the number of inputs in

the transaction

The INPUTCOUNT opcode pushes the total number of inputs in a transac-
tion to the top of the execution stack. INPUTCOUNT allows the script writer to
validate specific properties about the transaction and a way to compute what
the index is of the last input. This opcode is useful in concert with the IN-
PUTADDRESS opcode. For example, the user may want to say that the last

20

input must have a particular badge. They can figure out the last input index us-
ing the INPUTCOUNT and retrieve the address using INPUTADDRESS. They
can then use HASBADGE to validate that the input address contains the badge
requested.

4.7.6 The HASBADGE Opcode

Opcode Name Inputs Output Description
HASBADGE Address, Badge Bool Returns true if the address has

the badge specified

The HASBADGE opcode expects there to be two elements on the execution
stack. The top of the stack is an address, and the second is the badge. It pops
off the inputs and puts True on the top of the stack if the address has the badge
specified. This opcode is particularly challenging to implement because it must
do a query about an address on the blockchain. An appropriate implementation
will use an index where the search is no longer than O(logN) in complexity.
Since logN is small for any reasonable size of N (anything with 64bits), this
should provide adequate performance. Also because that badge scripts are run
last after all the other transaction validation, most DDOS [13] attacks should
be mitigated. In the event of too many failed transactions, the node software
can ban further transactions against a beacon by the input addresses. Since
Merit is invite only, addresses are a scarce commodity, and the cost of a ban
is not insignificant. The HASBADGE opcode is particularly useful to allow
more complex community relations and also tiered pricing to those wanting
compensation for joining a community. A user may create a @newstier1 and a
@newstier2 community where joining the second requires being part of the first.

Inviter

@joe

Beacon Alias

@tier2

Badge Script

Has @tier1

Input

@bob

Badges

@tier1

Output

@joenews

Amount

5MRT

+@tier2

Input

@alice

Badges

None

Output

@joenews

Amount

5MRT

fail+5MRT +5MRT

Figure 7: Badge Tiers

21

5 Safety

Safety is a property that users have discovered they value greatly. Many third-
party services now provide vaulting a feature on top of existing currencies. Merit
provides a decentralized approach to vaulting by implementing a simplified form
of covenants. Merit extends the existing Bitcoin scripting system with new
opcodes which enable important safety features such as vaulting that doesn’t
require a trusted third-party. In addition to new scripting opcodes, Merit’s
unique beaconing system.

5.1 Beacons

Merit does not allow non zero amount transactions to addresses that are not bea-
coned. This safety feature protects users against common mistakes of mistyping
or copying addresses. Users can’t mistakenly send Merit to an invalid address
preventing a source of currency leakage and misuse. It brings a vital safety
feature from the bank world in a decentralized way. All forms of addresses must
be beaconed including scripts.

Beacons also allow the correct attribution and enable patronage and a way
for users to support people and organizations they care about since users can
choose the inviter address of a beacon.

5.2 Vaulting

Merit builds upon the Bitcoin scripting system by introducing several new op-
codes which allow building decentralized vaults. The existing Bitcoin scripting
system is designed so that scripts have minimal context around their execution.
Merit chose to extend Bitcoin’s scripting system because it is well understood by
the broader community, well tested, and also not Turing complete. The latter
property significantly improves the safety of the overall system. Other cryp-
tocurrencies that have Turing complete virtual machines like Ethereum have
been shown to be too error-prone and easily exploitable. By building on Bit-
coin’s Forth-like stack-based virtual machine, the overall system is more natural
to reason about and control.

5.2.1 Transaction Aware Scripts

Bitcoin scripts have no insight into the outputs of a transaction. Merit improves
upon Bitcoin’s scripting system by providing OPCODES which give script con-
text about the transaction the script is executing in. We introduced three new
OPCODES which allow vaults to work and some additional OPCODES to re-
duce the instruction count for vault scripts minimizing their cost.

22

Opcode Name Inputs Output Description

CHECKOUTPUTSIG

NumAddresses Bool Validates an output at index
OutputIndex

Address1
...
AddressN
OutputIndex
NumParams
Param1
...
..ParamN

OUTPUTAMOUNT OutputIndex Amount Returns amount at output index
OutputIndex

OUTPUTCOUNT Num Returns number of outputs in
the transaction

NDUP Num Duplicates the next N elements
on the stack

NDROP Num Removes the next N elements
from the stack

NTOALTSTACK Num Pushes the next N elements to
the alt stack and from the stack

NFROMALTSTACK Num Pushes the next N elements to
the stack from the alt stack

These new opcodes can be used to construct a vault script that only allows
funds to be transferred to a whitelist of addresses at a specific rate limit.

5.2.2 Simple Vault Script

The following vault script provides an illustrative example.

23

Listing 4: Simple Vault Script

// Stack
<s i gnature>
<pub l i c key>
<spend l im i t>
<address 1>
<address 2>
<number o f addresses>

// Sc r i p t
NTOALTSTACK
TOALTSTACK
DUP
TOALTSTACK
CHECKSIGVERIFY // check key used to secure the v au l t .
FROMALTSTACK
FROMALTSTACK
DUP
0
OUTPUTAMOUNT
GREATERTHANOREQUAL //make sure not too much i s spent .
VERIFY
0
0
NFROMALTSTACK
NDUP
NTOALTSTACK
CHECKOUTPUTSIGVERIFY // v a l i d a t e t ha t amount i s sen t

// to on ly addre s se s o f the w h i t e l i s t
NFROMALTSTACK
DEPTH
1
’ s ’
1
CHECKOUTPUTSIGVERIFY //make sure change i s put back in the v au l t

// the ’ s ’ above means the hash o f t h i s s c r i p t .
// t h e r e f o r e , the v au l t must be the same .

2
OUTPUTCOUNT //make sure t he r e are no o ther ou tpu t s

// in the t r an sac t i on .
EQUAL

24

5.2.3 The CHECKOUTPUTSIG Opcode

Opcode Name Inputs Output Description

CHECKOUTPUTSIG

NumAddresses Bool Validates an output at index
OutputIndex

Address1
...
AddressN
OutputIndex
NumParams
Param1
...
..ParamN

The CHECKOUTPUTSIG opcode allows a script to validate that a desti-
nation satisfies specific requirements.

It first validates that the addresses specified in the output match the ones
listed in the opcode. This output check allows implementing whitelists where
funds can only be transferred to a restricted list of addresses. CHECKOUT-
PUTSIG allows users to create individualized coins which limit the value of
stealing their private keys.

This output check combined with Parameterized Script Addresses allow a
script to make sure an output is the same kind of coin, which is crucial for im-
plementing features like vaults. It also allows coloring coins which can construct
sub currencies that have unique properties.

If the destination is a Parameterized Script Address, you can create a parameter-
mask which checks that the output matches against the mask. Each parameter
can match exactly or be changed.

SELF is a special address which makes sure that the destination address
matches the script’s address. In other words, you can limit a coin to transfer
only to itself. This isn’t particularly useful by itself because that would lock the
funds into a coin that can never be spent. However, this feature combined with
Parameterized Script Addresses provide a powerful way to contain a coin and
control how it can be transferred.

5.2.4 Parameterized Script Addresses

To support READONLY parameters to scripts, Merit created a new address
type called Parameterized Pay-to-Script-Hash which provides a list of read-only
stack items that are part of the unspent output. These are then appended to
the scriptSig after the redeem script is expanded. It is essential to lift some pa-
rameters out of the script directly because the CHECKOUTPUTSIG opcode
allows outputs to change specific parameters. Merit provides more complex
vaults which have two or more keys. You can provide a spendable key to some-
one with a rate limit while keeping a master key that allows you to change
certain aspects of the vault. For example, if the spend key is compromised, you
can change the vault with the master key preventing further theft.

25

These safety features are provided in a decentralized way and vaults can
function without third-parties.

Step 1 Execute Ouput Script

Step 2 Execute Input's Script

Reject Transaction

returns falseStep 3 Combine Output Script Params with Redeem Script

returns false

Step 4 Execute Redeem Script

Accept Transaction

returns false

Figure 8: Parameterized Script Validation State Machine

5.3 The OUTPUTAMOUNT Opcode

Opcode Name Inputs Output Description
OUTPUTAMOUNT OutputIndex Amount Returns amount at output index

OutputIndex

Another useful property of vaults is the ability to rate limit the amount
of Merit that can come out of. Merit has added an opcode called OUTPUTA-
MOUNT which returns the amount of Merit being sent to an output at a specific
output index in the transaction.

The opcode takes the output index from the top of the stack, consumes it
and adds the amount of Micros (The smallest division of Merit) at that specific
index. If the index is out of bounds, an error is returned, and the transaction
is not valid.

26

5.4 The OUTPUTCOUNT Opcode

Opcode Name Inputs Output Description
OUTPUTCOUNT Num Returns number of outputs in

the transaction

The OUTPUTCOUNT opcode returns the total number of outputs in the
transaction and does not have any input.

This opcode is critical in being able to implement vaults and other safety
features because it can be used to limit the number of outputs a transaction
can have. Without this opcode, rate limiting and other vault features could not
be possible. Rate limits would not be possible because you can always send
Merit from a coin to an output that isn’t checked by the OUTPUTAMOUNT
opcode. By limiting the number of outputs, you can write a script to make sure
all those outputs follow the rate limit. Similarly, features like whitelists would
not be possible because someone could always transfer Merit to an output not
checked by CHECKOUTPUTSIG. This simple opcode is, therefore, necessary
to provide the safety features of Merit.

5.5 The NDUP Opcode

Opcode Name Inputs Output Description
NDUP Num Duplicates the next N elements

on the stack

The NDUP opcode duplicates the N entries on the stack. It allows the ability
to have an array like semantic on top of the stack. Because vaults require the
use of Parameterized Script Addresses which have arrays of parameters, this
opcode allows vaults to be more straightforward and shorter, requiring fewer
bytes. This lowers the code of vault transactions and also their storage on the
blockchain.

5.6 The NDROP Opcode

Opcode Name Inputs Output Description
NDROP Num Removes the next N elements

from the stack

This NDROP opcode is the opposite of the NDUP opcode and removes
N elements from the stack. The motivation behind this opcode is the same as
NDUP, to allow array semantics and also simplify and shorten vaults and similar
scripts that deal with Parameterized Script Addresses.

5.7 The NTOALTSTACK Opcode

Opcode Name Inputs Output Description
NTOALTSTACK Num Pushes the next N elements to

the alt stack and from the stack

27

Similar to Bitcoin, Merit scripts have two stacks, the main stack, and the
alternate stack. The NTOALTSTACK opcode allows a user to transfer N items
to the alternate stack in one command. It expects the number of items to be at
the top of the main stack and will pop that many items off the main stack and
push them to the alternative stack. And finally will push the count of items to
the top of the alternative stack. This allows array-like semantics when working
with the alternate stack.

The items pushed to the alternative stack will be in reverse order after this
opcode is executed.

5.8 The NFROMALTSTACK Opcode

Opcode Name Inputs Output Description
NFROMALTSTACK Num Pushes the next N elements to

the stack from the alt stack

This opcode is the opposite of the NTOALTSTACK opcode. It excepts the
top of the alt stack to be the count of items and then will pop them off the
alternate stack and push them to the main stack. Executing NTOALTSTACK
and then NFROMALTSTACK will return the main stack to its state before
NTOALTSTACK was called. This allows array-like semantics when working
with the alternative stack.

6 Usability

One reason users are pushed towards trusting and using third-party services is
that the usability of many cryptocurrencies is weak and is a step back from
many of the conveniences of state-backed currencies. Merit is built with the
idea that the hard problem of usability must be tacked. Improving the usability
of decentralized systems is far harder than centralized systems and requires
significant time and investment.

Some usability enhancements have already been discussed, such as beaconing
which allows address verification and prevents users from accidentally sending
funds into the ether. We talked about vaults which provide an more natural
way to secure and manage funds and make common key management mistakes
less tragic.

One ease of use feature that was introduced by Paypal is the ability to send
funds to people who are not yet on the platform via private communication
channels. Merit provides a decentralized system to send funds to new users of
Merit.

6.1 Frictionless Transactions

Merit provides a feature to quickly and easily send Merit to those that are
currently not using Merit. It both sends merit and invites that person in one
step. Merit has a new opcode called EASYSEND which allows a user to put

28

funds in a decentralized escrow. The funds can be canceled and sent back to
the sender, and are unspendable by the receiver after a certain amount of time.
The sender sends the recipient a secret key and their public key. The recipient
then can use that information to get the funds.

Opcode Name Inputs Output Description

EASYSEND

NumKeys Bool Allows accepting funds by any
keys listed. First key is can re-
cieve funds after the timeout.

Key1
...
Keyn
MaxDepth
Signature

The motivation for a new opcode is to limit the fee of sending these kinds
of transactions by making them smaller. This building block can be used by a
light wallet to construct URLs which automatically accept funds once the light
wallet app is loaded. A light wallet is software which allows a user to work with
the system without having to have the entire blockchain on their computer.

6.1.1 Merit URIs

Transaction URIs can be sent via any private channel such as SMS or email to
people who are not currently using Merit.

merit:?sk=ABC123&pk=DEF456&t=1000

Param Description
sk Secret Key
pk Public Key of Sender
t Timeout in block height

The parameters are designed to take up the least amount of characters while
still being recognizable.The funds are available to them for a certain amount of
time where they can download or install the wallet software and accept the
funds. The sender can always cancel the transaction and get the funds back
before or after the time limit has expired.

For cases where operating systems will not support the Merit URI schema,
an alternative proposal is to use standard URLs.

https://<host>/recieve/?sk=ABC123&pk=DEF456&t=1000

However, great care must be taken by the host not to log parameters to
these requests. This URL approach might be implemented by light wallets or
web wallets which want to drive new users to use their implementations.

29

7 Scalability

The most popular cryptographic currencies are limited in their scalability in
several ways. The massive centralization of mining has introduced many single
points of failure into the decentralized system. Also, the transaction rates of
Bitcoin and Ethereum are very low and have led to high transaction fees during
times of congestion [16]. These high fees have made these systems limited in
their daily utility.

Merit tackles the centralized mining problem by embracing an ASIC resistant
mining algorithm based on the Cuckoo Cycle [2]. Merit improves the transaction
rate over Bitcoin in two stages. First by providing a frequent block-time with
large blocks. And then later, using a generalization of the blockchain called the
block fabric.

7.1 The Cuckoo Cycle: Merit’s Proof-of-Work

Merit uses a memory hard asymmetric proof-of-work called the Cuckoo Cycle
[2]. This algorithm constructs a bipartite graph from a hash seed where the
proof-of-work is a 42 length cycle between the nodes in the graph. Verifying
this cycle is simple while finding it is hard. The performance of finding a cycle is
correlated to the memory bandwidth of the underlying hardware. Since memory
technology is competitive and a commodity, the Cuckoo Cycle should allow
people with conventional hardware to compete. Building an ASIC to increase
compute power does not improve the performance of the algorithm since it is
memory bandwidth bound.

30

Figure 9: Bipartite Graph with Cycle of Length Four

Using the Cuckoo Cycle enables an extra degree of freedom in adjusting the
difficulty. In addition to the bitcoin nBits difficulty parameter which specifies
how many zero bits the hash must have to be considered a valid proof-of-work,
Merit also introduces edgeBits which specifies the minimum size of the graph
that needs to be computed. Currently, at the time of writing this, a single proof
attempt where edgeBits = 26 takes about 700MB of ram. This is reasonable
enough that the mining software can run on a mobile device.

31

0 1,000 2,000 3,000 4,000 5,000
0

100

200

300

400

26s mean
54s mean

Block Height

T
im

e(
s)

Figure 10: Empirical Merit Block Time

The graph above depicts time between blocks. The adjustment of the diffi-
culty can be seen given the two regression lines, where the adjustment happened
around block 2000. The difficulty adjustment attempts to maintain a time be-
tween blocks of one minute on average. However, the times blocks are solved is
random and the actual times fall within a very specific distribution.

50 100 150 200 250 300 350 400
0

50

100

150

200

250

Time(s)

C
ou

n
t

Figure 11: Empirical Merit Blocktime Histogram

The time between blocks follows a Poisson Point Process [3], and the mining

32

algorithm can be modeled as an exponential distribution. The standard devi-
ation computed from the actual mining process is close to the mean in both
before and after adjustment.

std =

√
1

λ2

Before the adjustment, the mean time was 26 seconds with a standard devi-
ation around 28. After the adjustment, the mean time went to 54 seconds with
a standard deviation around 53.5. The standard deviation from the empirical
data matches what you would expect from an exponential distribution, which
is close to the mean.

This is the same distribution as mining Bitcoin [4] and should provide the
same lottery dynamics. But because the block frequency is a minute instead of
ten minutes, and the block size is 16MB instead of 1MB, then a person with a
commodity machine has a fighting chance to win a block since the probability
of finding a valid Cuckoo Cycle within a short amount of iterations is higher.
There is no ASIC advantage where a single machine may have many orders of
magnitude performance increase over another piece of hardware.

7.2 Bigger Frequent Blocks

In the first stage, Merit tackles the transaction rate problem by offering block
times of 1 minute with a 16MB block size, providing a potential 160x improve-
ment in the transaction rate over Bitcoin.

0 200 400 600 800 1,000 1,200

Bitcoin

Etherium

Litecoin

Merit

7

15

56

1,120

Potential Requests/Second

Figure 12: Stage One Transaction Rate

7.2.1 Bandwidth

In practice, the maximum block size might not be reached because of bandwidth
limitations in the network. Research done in the Bitcoin Unlimited paper [17]
looks at the impact of various block sizes. Miners are at risk of creating orphaned
blocks when as the size of blocks increases block because it takes some time for

33

a block to propagate across the network. The larger the block size, the higher
the chance the block will compete with other blocks mined during the time it
takes to propagate.

Therefore increasing block size beyond the network’s capabilities to propa-
gate blocks provides no improvements over the transaction rate. At some point,
miners won’t put more transactions because the risk of creating stagnant blocks
becomes too large. A different method of increasing performance must, there-
fore, be considered.

7.2.2 Lightning Network

The Bitcoin lightning network attempts to offload transactions from the blockchain
to a network of channels. The idea is that channels only need to announce fi-
nal results of all transactions on the blockchain once they are closed. Any two
parties can send transactions to each other by routing the transactions through
a series of channels. Unfortunately, there are several issues with the lighting
network which provide real-world limitations.

• Opening and closing a channel requires staking coins in a funding trans-
action.

• Routing a transaction requires intermediaries to have the liquidity neces-
sary to route transactions.

• The system is susceptible to DDOS attacks.

• The system is susceptible to fraud and may require users to use watchtower
nodes.

• The complexity of creating and maintaining a channel may mean it is
appropriate for large institutions.

Merit is still evaluating whether it will incorporate lightning network features
into its system.

7.3 Block Fabrics: A Generalization of the Nakamoto Blockchain

A more dramatic approach needs to be taken to scale Merit for stage two because
increasing block size and frequency won’t scale to support a sizeable worldwide
user base. The larger blocks and shorter block time will improve transaction
rates over Bitcoin and Ethereum, but is a fundamentally limited approach be-
cause the speed of the network is only as fast as the speed of one machine on
the network. To achieve real scalability, we need to design a system that has
multiple writers by sharding the address space and converting a one-dimensional
database into a two dimensional one.

The crucial insight is that the Nakamoto Blockchain is a degenerative case of
what we call block fabrics, which are inspired by thousands of years of tradition
from the craft of weaving which create a form and structure of time.

34

7.3.1 The Weave and Warp

Merit implements an algorithm inspired by the weaving of fabrics. Block fabrics
have many threads aligned in one direction in parallel called the Warp and these
threads have a single thread woven through it back and forth called the Weft. In
other words, many parallel strands are held together by a single thread weaved
through them over time. Instead of calling this single thread the Weft, we will
use the term the Weave to highlight the relationship with time better.

Figure 13: Weaving Fabric [19]

7.3.2 Warp Chains

Merit’s sharding algorithm divides the address space into shards called Warps.
Each Warp is a blockchain and has a single writer for a period of time called
the leader. If we think of the Warp’s existence in the platonic world, the Warp
has existed from the beginning of time and will exist to the end of time. In
some sense, the Warp is independent of time similar to how a real Warp on a
loom is fixed before the weaving process begins, Yet the fabric is wholly defined
by time when it is woven.

Each miner competes to become the leader of a Warp by mining blocks on
the Weave. An explanation of how the Weave functions is described later. Each
Warp has the following properties.

35

Property Description
Blockchain Each Warp is a blockchain.
Single Writer A Warp has a single leader at any given time.
Prefix Range Identity of a Warp is its address range.
Many Warps Number of Warps at any given time is defined.
Have Transactions Blocks in a Warp have transactions, invites, and beacons.
No PoW Blocks do not have a proof-of-work.
Signed Blocks are signed by the leader.

Each warp block Has the following properties defined in the block header.

Property Description
Previous Block Hash to previous block in the warp.
Weave Block Hash to weave block.
Merkel Root Merkel Root hash describing the set of transactions
Signature The signature of the leader of the warp chain.
Public Key The public key of the leader of the warp chain.

Notice there is no nonce or proof of work in this chain. The leader signs each
block and is allowed create as many blocks as possible that pass the address
range validation defined in the referenced weave block.

7.3.3 Prefix Range

A Warp has a continuous address range with N bytes in size.

Property Description
Prefix Size Number of bytes to match.
Start Start of byte range.
End End of byte range.

The bytes that match against the address range are any bytes that are a
permutation between the start and end of the range. Each Warp has a mutually
exclusive address range assigned to it via the Weave process described later.

7.3.4 Warp Assignment Overview

Each Warp is a blockchain where each block contains transactions, invites, and
beacons that are assigned to it. The Prefix Range of the Warp is used in the
assignment algorithms to match the asset to the Warp. The assignment logic
for beacons, invites, and transactions is outlined in the table.

Type Assignment Logic
Beacon If the Beacon’s address matches the Warp prefix
Transaction If one of the input’s addresses matches the Warp prefix
Invite If one of the input’s addresses matches the Warp prefix

36

7.3.5 Invite and Transaction Assignment

Invites and Transactions have the same structure, and therefore their assignment
to a Warp follows the same logic. Merit inherits the transaction structure of
Bitcoin. Each Transaction has one or more inputs and one or more outputs.
Each input references a previous output by transaction id and index.

Transaction Input Mgoc7q4w148kbajifJHryFwJiZgwm1z1gF

Warp
Start MgoXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

End MgpXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Assigned to

Figure 14: Beacon Assignment

Each transaction input must have an address associated with it given the
rules of the Merit invite system. A transaction is assigned to a Warp if it’s in-
put’s address matches a Warp’s prefix. Because most transactions have multiple
inputs, the transaction is split into many transactions.

7.3.6 Beacon Assignment

It is vital that the Beacon ends up in the same Warp as the Invite that is used
to activate the Beacon. Each Beacon has an address which it is advertising, and
it is this address that an invite is sent. The Beacon is matched to a Warp by
matching the Beacon’s address to the Warp’s address range. Since Warps are
guaranteed to have mutually exclusive prefixes, then the Beacon will end up in
the same Warp as the Invite sent to it.

37

Beacon Address MEagc8eva9moLxkRi67GSL7AtVPdbyCYe5

Warp
Start MEagXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

End MEb1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Assigned to

Figure 15: Beacon Assignment

7.3.7 Transaction Splitting

Transactions with more than one input are split into many transactions with the
same outputs. If a transaction has N inputs, it will be split into N transactions.
The original transaction fee is split among the Warps and rewarded to the Warp
leaders given the Warp fee rules. The original transaction is considered complete
when all splits appear in blocks on their assigned Warps.

Transaction with 3 inputs

Transaction with input 1

split

Transaction with input 2

split

Transaction with input 3

split

Warp 1

assign

Warp 2

assign

Warp 3

assign

Figure 16: Transaction Assignment

38

7.3.8 The Weave Chain

Miners compete on the Weave chain using the Cuckoo Cycle proof-of-work. The
Weave can be thought of as the main blockchain. It weaves through each Warp
in a deterministic order by partitioning the whole address space into N warps.
The size of N must be necessarily a power of two. This means there can be,
2,4,8,... Warps. Each block in the Weave chain has three parts...

1. Warp Owner Announcement.

2. Merit Coinbase Transactions and Ambassador Rewards.

3. Invite lottery rewards.

The weave block has the following data in the header.

Property Description
Previous Block Hash Hash to previous block in the warp.
Merkel Root Hash Merkel Root hash describing the set of transactions.
NBits The number of leading zero bits the proof-of-work must

have.
EdgeBits The number of bits used to describe an edge cycle.
Nonce An integer that is incremented to change the block hash.
Cycle The proof-of-work in the form a Cuckoo Cycle.
Warp Number Warp number.
Total Warps The total number of warps.
Signature The signature of the leader of the warp specified.
Public Key The public key of the leader of the warp specified.

The weave blocks require a proof-of-work and are signed by the winning
writer of the warp block. Which warp they can write to is specified by the warp
number that is deterministically selected in a round robin fashion.

39

Warp A

Warp B

Warp A

Warp B

Warp A

Weave Block 1

Weave Block 2

Weave Block 3

Weave Block 4

Weave Block 5

Block 1 Block 2 Block 3

Block 1 Block 2 Block 2

Block 1 Block 2 Block N

Block 4 Block 5 Block 6

Block 4 Block 5 Block N

Figure 17: Weave and Warp

7.3.9 Warp Owner Announcement

When miners successfully mine a block on the Weave chain, they take over
being the write to a Warp that is deterministically determined by taking the
next Warp in the set of N Warps that are assigned at the time. If we assign
each Warp an index W into the set of N , and any given block Bi returns the
assigned warp index W with the function A(i). The Warp assigned to block Bi

is

A(i) = A(i− 1) + 1 mod N

40

.

7.3.10 Address Space Partitioning

Just like Bitcoin, Merit addresses are a RIPEMD-160 hash function which is a
160-bit hash. This is a huge space and is broken up into any practical number
of pieces of equal shards. The size of each shard can be easily specified by
the number of significant bits required to describe the start and end of each
shard. Since we don’t expect the number of shards to be too significant at any
given time, then the address range can be compactly stored using the minimum
number of bits required to define the start and end of the range.

Warp 1

00 01

Warp 2

01 10

Warp 3

10 11

Warp 3

11 00

160-bit Address Space

Figure 18: Four Warp Partitioning

7.3.11 Dynamic Warp Adjustment

The number of Warps can be adjusted dynamically by looking at the transaction
rate over the last X blocks. We can decide what At Capacity is per Warp,
and use that to maintain enough Warps never to surpass this capacity. These
attributes can be fixed to create a deterministic algorithm for determining the
number of Warps at any given block on the Weave chain. When the number of
Warps N increases from one block to the next, the new Warp assignment will
assign only part of the previous Warp. In this situation, the new Warp partially
occludes a previous Warp. Each warp leader must watch the Weave blockchain
to understand when their Warp is partially occluded. Any Warp blocks after
the block referenced in the occluding Weave block must not have transactions
that are occluded. This may require the occluded warp leader to abandon any
blocks after the referenced block and start writing again.

7.3.12 Coinbase Transactions and Ambassador Rewards

Coinbase transactions, Ambassador Rewards, and invite generation occur on
the Weave chain. This makes sense because these transactions have no inputs

41

and therefore cannot be assigned to a Warp. This rule also requires changes in
the existing blockchain algorithm defined in stage one scaling where Merit is a
single blockchain with 16MB blocks and one minute block time.

7.3.13 Warp Fee Payout

To incentivize future leaders of a Warp to pick the latest block written by
the previous Warp leader, the previous leader will give 60% of the fees they
accumulated to the next leader and keep 40%. This 40/60 split is inspired
by the Bitcoin-NG [20] paper. The Bitcoin-NG paper assumes an attacker is
bounded by 1/4th of the mining power. However, because Warps partition the
address space, and therefore the fee distribution, the attacker has a smaller
incentive to misbehave because the fees from all transactions are distributed
among all leaders. The attacker must have a sustained attack over the period
of N ∗ 2 Weave blocks where N is the number of Warps to capture 100% of the
transaction fees for an N block period.

7.3.14 Fabric Analysis

Looking back at the two concepts, we can summarize by saying that the Weave
assigns leadership of writing capability to a Warp to the miner who wins a
Weave block. They can write to the Warp until another leader of the Warp
takes over. The assignment of the Warps is well defined and ordered where
the time between Warp leadership changing hands is regular. For example, if
the number of Warps available is N , then a Warp leader will expect to lose
leadership of the Warp in N minutes. This is because the time between blocks
on the Weave chain is one minute.

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Bitcoin
Etherium

Litecoin
Merit-Blockchain

Merit-2Warp
Merit-4Warp
Merit-8Warp

7
15
56

1,120
1,500

2,150
3,225

Potential Requests/Second

Figure 19: Stage Two Transaction Rate

There is a constant balance between increasing throughput or reducing la-

42

tency. Merit attempts to reduce latency by providing fast minute block times
on the Weave blockchain. At the same time, throughput is increased by having
multiple writers committing transactions on the blockchain. A downside is that
transaction on a given Warp are confirmed for every N blocks where N is the
count of Warps. This is because transactions from a particular reader are com-
mitted to the blockchain once the next leader for that Warp acknowledges the
blocks of the current leader by mining a block no the Weave chain. This means
that latency of confirming transactions is highly predictable and is a function
of the number of Warps N and the time between blocks on the Weave. As an
illustrative example, if N is two, then the latency when a Warps transactions
are committed is two minutes. As the system reaches capacity, N would be dou-
bled to four and therefore the confirmation time would increase to four minutes.
When N reaches 64, we end up with a confirmation time around an hour. The
relation between throughput is geometrically defined via the space-time relation
of the Weave and Warp chains.

As an illustrate example, if we say each Warp leader is capable of writing
1K split transactions per second, and likely 100% of those transactions created
from a transaction with at least two inputs, then we can say the overall transac-
tion throughput is 1/2 of the Warp transaction throughput. So with 2 Warps,
we have an overall rate of 1000 transactions per second because 1000 = 2000/2.
Four Warps would double the transaction rate to 2K transactions per second. It
is easy to see how only having a few Warps can increase the transaction rate sig-
nificantly. However, it is important to note here that this assumes transactions
with only two inputs. With more substantial transactions, the throughput will
not double so cleanly. The dynamic warp adjustment algorithm should com-
pensate for this and provision enough warps to handle the required transaction
volume. An analysis of the average input size once Merit has grown would
provide a chance for a better analysis.

The obvious take away here is that eventually for any machine to have a set
of all the unspent outputs (UTXOs), it would eventually need to index all the
transactions in the system.However, this process can be much faster than the
original block generation process of the Warp leaders. This is because the Warp
leaders do more work because they have to decide which transactions to put in
a Warp.

8 Summary

Merit has aggressively focused on community, ease of use, safety, and scalability
in an attempt to tackle the centralization and trust in third-parties that have
corrupted the vision of the cryptographic currency community.

Merit recognizes that there is a wide variety of users of the system and intro-
duces incentives to those ambassadors of the system that go beyond mining. By
having an Ambassador Tree, we allow users to support people and organizations
they love without having to understand and manage complex software systems.

43

Glossary

address An address refers to short representation of a public key. The public
key is hashed with RIPEMD-160 and then base-58 encoded to create a
succinct reference to the public key.. 44, 45

ambassador An ambassador is a user of Merit who invites others and helps
build a strong community. They are represented in the system via a
beacon.. 44

ambassador forest An ambassador forest is the collection of all beacons. Merit
considers each beacon an ambassador because each person using merit can
invite others.. 44

ASIC ASIC stands for application-specific integrated circuit. These are spe-
cialized machines which accomplish what was once a software task in hard-
ware. The reason for building these is usually to improve the performance
of executing that specialized task.. 1

beacon A beacon advertises an address and it’s relationship with other ad-
dresses. It contains a reference to an inviter address, and beacons con-
struct an ambassador forest. Beacons are signed and contain the corre-
sponding public key.. 5, 44, 45

bearer currency A money whose ownership is controlled by the holder and
there is no central record keeping of who owns what. In the cryptocurrency
domain, this usually refers to the fact that proof of ownership is a signature
with a private key, and if the bearer of the key loses said key, they lose
the ability to prove ownership.. 3

Bitcoin A cryptocurrency created by Satoshi Nakamoto. Merit is based on
Bitcoin.. 3, 45, 46

block A node in the blockchain. Each block references the previous block by
the block’s hash. The block is composed of a header and a ledger. The
block hash is computed by hashing the data in the block header. The
ledger contains transactions and beacons. 44–47

block fabric A generatlization of the blockchain that improves on scalability
by dividing the problem space into weaves and warps.. 2, 30, 34

blockchain A blockchain is a linked list structure where nodes are called blocks.
The head of a list is the latest entry and it references the previous block
by the block’s hash.. 1, 44–47

coin A coin refers to an unspent transaction output. Each of these outputs has
an address and therefore addresses may have one or more coins.. 45

44

decentralized vaults Vaults in the cryptocurrency domain are a special mech-
anisms which make it harder to steal coins. Typically these are imple-
mented by third-parties in the form of coins that require multiple sig-
natures to redeem. Decentralized vaults do not require third-parties to
maintain safety but are supported by the algorithms and protocol. Merit
provides mechanisms to create vaults that do not require third-parities..
1

Ethereum A distributed computation platform and cryptocurrency that has
turing complete smart contracts and a state storage mechanism.. 3

genesis address Is an address of the first beacon in the genesis block.. 6

genesis block The first block in the blockchain. It doesn’t reference any prior
block.. 45

input Each transaction has one or more inputs. An input contains a reference
to a previous output by the transaction id and index. It also has a script
which only contains data. This data is fed into the previous output’s script
for validation.. 45, 46

invite An invite is a special kind of transaction which, when sent to an address
a beacon advertises, will activate that address. Without at least one invite,
an address is considered deactivated or invalid and cannot send or recieve
merit.. 8, 44

inviter address Is the address that a beacon references as the one that they
want to be invited by.. 7

Litecoin A cryptocurrency based on Bitcoin which provides a better transac-
tion rate and lower fees.. 3

merit Is the name of the coin used in the Merit project.. 45

opcode An opcode is a command that is executed in a script by the Merit
virtual machine.. 20, 46

output Each transaction has one or more outputs. And ouput contains the
amount of merit and a script. An output is also called a coin and is
considered spent when another transaction’s input references the output
successfully. An output is unspent when there are no valid transactions
that reference it.. 46

proof-of-work Proof of work is some data that proves a machine did a given
amount of work. Bitcoin uses a proof-of-work called hashcash. Merit uses
a proof-of-work called the Cuckoo Cycle [2].. 39, 46

45

public key A public key is a set of bytes derived from a private key. It is used
to decrypt data encrypted with a private key. It is also used to validate
signature made by a private key. The public key can be shared freely with
anyone or even published publically, hence the name.. 5, 44

regex A regex is short for regular expression. A regex defines a search pattern
using a special language. A piece of text either matches or doesn’t match
the regex.. 9

script A script is composed of operations and data. Each output has a script
which executes the transaction validation. Merit iherits the virtual ma-
chine from Bitcoin and extends it with it’s own opcodes. 45, 46

shard A shard describes a region in a problem space. Shards do not overlap..
46

sharding Breaking up a problem space into shards. 34

transaction Is an entry in the blockchain ledger. It contains inputs which
transfer Merit to the outputs.. 1–3, 44–46

turing complete Turing complete means that a particular machine can do
anything a Turing Machine can do.. 46

Turing Machine Is a mathematical model of a computer invtented by Alan
Turing. It is a machine that can perform any computation.. 46

vault A vault is a special script that keeps Merit safe. It usually splits the func-
tionality into spending and changing a vault. Spending requires a special
spend key and changing requires a master key. Spending is restricted in
several ways such as only being able to send to a whitelist of addresses,
and also having a spending limit per transaction.. 2

virtual machine Is an implementation of a computer in software. Merit has
a virtual machine to execute scripts. Merit’s virtual machine is not turing
complete to simplify reasoning of scripts and improve safety.. 45

warp warps are a blockchain that doesn’t require a proof-of-work, but only a
signature from a leader. Who get’s to write is determined by the weave.
Each block in the warp has transactions and is signed by leader.. 39, 44,
47

warp block A block that contains only transactions. For any given warp a
single writer can write blocks. The writer is called the leader. The warp
block does not require a proof-of-work but does require a signature from
the leader.. 36

46

weave A weave is composed of weave blocks. A weave is analogous to the orig-
inal blockchain instead of combining transactions into a block, it contains
a claim by the miner to write into a warp. It also contains all coinbase
transactions and invites.. 44, 46

weave block A block that contains only coinbase transactions, coinbase invits
and claims to write to a warp. 36, 39, 47

References

[1] Aron Laszka, Benjamin Johnson, and Jens Grossklags, When Bitcoin Mining
Pools Run Dry, Financial Cryptography and Data Security: FC 2015 Inter-
national Workshops, January 30, 2015, Revised Selected Papers (pp.63-77)

[2] Tromp, Cuckoo Cycle, https://github.com/tromp/cuckoo/

[3] F. C. Kingman, Poisson Processes, (17 December 1992) Clarendon Press,
ISBN 978-0-19-159124-2

[4] Pranav Gokhale, Why is the Poisson distribution relevant to
Bitcoin/blockchain?, https://www.quora.com/Why-is-the-Poisson-
distribution-relevant-to-Bitcoin-blockchain, Feb 21, 2017

[5] Antoon Bosselaers, and Bart Preneel, The hash function RIPEMD-160,
https://homes.esat.kuleuven.be/ bosselae/ripemd160.html

[6] P. Faltstrom, Ed., The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA), https://tools.ietf.org/html/rfc5892, Au-
gust 2010 ISSN: 2070-1721

[7] Blanchet Viagenie, Preparation of Internationalized Strings (”stringprep”),
https://tools.ietf.org/html/rfc3454, December 2002

[8] Evgeniy Gabrilovich Alex Gontmakher, The Homograph Attack,
http://www.cs.technion.ac.il/ gabr/papers/homograph full.pdf, Com-
munications of the ACM, 45(2):128, February 2002

[9] Mark Maunder, Chrome and Firefox Phishing At-
tack Uses Domains Identical to Known Safe Sites,
https://www.wordfence.com/blog/2017/04/chrome-firefox-unicode-
phishing/, April 14, 2017

[10] Jean-Philippe Aumasson and Daniel J. Bernstein, SipHash: a fast short-
input PRF, https://131002.net/siphash/siphash.pdf

[11] Luc Devroye, Non-Uniform Random Variate Generation,
http://www.eirene.de/Devroye.pdf, New York: Springer-Verlag. 1986

[12] Script, https://en.bitcoin.it/wiki/Script

47

[13] E. Rescorla, Ed., Internet Denial-of-Service Considerations,
https://tools.ietf.org/html/rfc4732, November 2006

[14] Efraimidis and Spirakis, Weighted random sampling with a reservoir,
https://doi.org/10.1016/j.ipl.2005.11.003, Information Processing Letters,
Volume 97, Issue 5, 16 March 2006, Pages 181-185

[15] Horst Feistel, Cryptography and Computer Privacy,
http://www.apprendre-en-ligne.net/crypto/bibliotheque/feistel/index.html,
Scientific American, May 1973, Volume 228, No 5, pp. 15-23

[16] Alyssa Hertig, Bitcoin Fees Are Down Big: Why It Happened And What
It Means, https://www.coindesk.com/bitcoin-low-fees-why-happening-why-
matters/, Feb 23, 2018, at 01:30 UTC

[17] Peter R. Rizun, A Transaction Fee Market Exists Without a Block Size
Limit, https://www.bitcoinunlimited.info/resources/feemarket.pdf

[18] Coindesk How Will Ethereum Scale?, https://www.coindesk.com/information/will-
ethereum-scale/

[19] Wikipedia, Warp and weft.jpg, https://en.wikipedia.org/wiki/File:Warp and weft.jpg

[20] Ittay Eyal, Adem Efe Gence r, Emin Gün Sire r, and Robbert van
Renesse, Cornell University, Bitcoin-NG: A Scalable Blockchain Proto-
col, https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-
eyal.pdf

[21] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifiers
(URI): Generic Syntax, http://www.rfc-base.org/txt/rfc-2396.txt

[22] By Horst Feistel, Cryptography and Computer Privacy,
http://www.apprendre-en-ligne.net/crypto/bibliotheque/feistel/index.html

[23] Sergey Brin, Lawrence Page, The Anatomy of a Large-Scale Hypertextual
Web Search Engine, http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf

[24] John (JD) Douceur, Thomas Moscibroda , Lottery Trees: Motivational
Deployment of Networked Systems, SIGCOMM 2007: ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Kyoto, Japan

48

	Introduction
	Themes
	The Problem
	The Third-Party Paradox
	Safety First
	The Death Star Networks

	Community
	Proof-of-Growth
	Beacons
	Beacon Properties
	Address
	Inviter Address
	Public Key
	Signature
	Aliases
	Beacon Lifetime

	Address Aliases
	Simplicity
	Better Safety
	Organized Distribution of Names

	Invites
	Address Validation
	Transactable

	Ambassador Rewards
	Community Growth Scores
	Aged Balance
	Address Contribution
	Subtree Contribution
	Weighted Score
	Expected Value
	Final CGS and SubCGS
	Two Lotteries Per Block
	Valid Candidates
	CGS Lottery using Inverse Transform Sampling

	Invite Rewards
	Selecting Addresses
	The SubCGS Lottery
	The One-Time Reward Lottery
	The Random Lottery
	Distribution Rate

	Community Beacons
	Badges
	Badge Scripts
	Badge Transaction Validation
	The INPUTADDRESS Opcode
	The INPUTCOUNT Opcode
	The HASBADGE Opcode

	Safety
	Beacons
	Vaulting
	Transaction Aware Scripts
	Simple Vault Script
	The CHECKOUTPUTSIG Opcode
	Parameterized Script Addresses

	The OUTPUTAMOUNT Opcode
	The OUTPUTCOUNT Opcode
	The NDUP Opcode
	The NDROP Opcode
	The NTOALTSTACK Opcode
	The NFROMALTSTACK Opcode

	Usability
	Frictionless Transactions
	Merit URIs

	Scalability
	The Cuckoo Cycle: Merit's Proof-of-Work
	Bigger Frequent Blocks
	Bandwidth
	Lightning Network

	Block Fabrics: A Generalization of the Nakamoto Blockchain
	The Weave and Warp
	Warp Chains
	Prefix Range
	Warp Assignment Overview
	Invite and Transaction Assignment
	Beacon Assignment
	Transaction Splitting
	The Weave Chain
	Warp Owner Announcement
	Address Space Partitioning
	Dynamic Warp Adjustment
	Coinbase Transactions and Ambassador Rewards
	Warp Fee Payout
	Fabric Analysis

	Summary

